

Abstract— In today's society, where access to the technology

is becoming a basic human need, the need for software

applications and developers is rapidly increasing while the labor

market does not meet the needs of entrepreneurs. Workload of

software companies is constantly increasing, as they not only have

to develop new applications, but must also maintain the existing

ones. In order to respond to the growing demands, code

generators, tools which automatically generate production-ready

source code based on given template, have been developed. But

implementation of code generators and templates is very hard and

time consuming job which requires a wide knowledge of

metalanguages of which templates are usually made. Also,

structure of templates sometimes can be very complex. During

process of code maintenance, development of new modules, or

simply development of new applications based on old ones,

developer is faced with a choice: to use code generators or code

manually. In order to facilitate developers’ tasks this paper

presents concept of template generator and proposes its design. It

is a new tool which could be used to discover crosscutting

concerns in existing source code and automatically generate code

templates leaned to aspect oriented paradigm. Use of template

generator would provide well-structured generated code, faster

and cheaper application development and maintenance, and

would eliminate a requirement for a wide knowledge of template

metalanguages.

Keywords— template generator, CASE tools, code generator,

crosscutting concerns.

I. INTRODUCTION

HIS modern information era society imposes great

necessity of various software applications which now have

an increasingly important impact on human life. To make up

that demands enterprises have to make more applications in

shorter time frames, but also have to maintain existing

software [1]. In addition, they have to promptly respond to the

business changes and do so in an appropriate manner [2]. Due

to mentioned reasons it is not surprising that some analysts

report that the failure rate may exceed 50% of all projects [3].

In order to respond to the growing challenges various

Computer Assisted Software Engineering (CASE) tools have

been developed. Also, in the eighties of the past century the

idea of code generators, programs that helps to write

production-ready parts of the source code, was born.

With today’s complex code-intensive frameworks, such as

Java 2 Enterprise Edition (J2EE), Microsoft’s .NET, and

Microsoft Foundation Classes (MFC), it’s becoming more

important that programmers’ skills are used to build and/or use

code generators, which assist in building applications and

downgrading time and expenses needed for accomplishing

projects [4]. In addition to the financial benefits, code

generators preserve identical code structure and way of coding

in every generated file, which makes next cycle in software life

easier.

But building new applications is not the only developers’

job. Software companies may also reuse and improve existing

software which was developed by other companies or by

former employees. If the source code, in specific project, was

not well-structured or was not made by the help of code

generator, its maintenance becomes time consuming and more

human resources are allocated to assist in software lifecycle.

The problem becomes greater when the cycle comes to a point

without a support for a framework in use or when

programming language becomes obsolete. Then it is necessary

to retype the entire project into a new development

environment. Such events may occur also in lifecycle of

software developed with code generators, but the change to

another language and other development environment goes

faster because most of the work is related only to templates

changing. Process is even faster if the templates are made with

language free data model, than it is necessary only to load new

description of target language and generate new source code.

In order to facilitate developers’ tasks this paper describes a

proposal for improving reuse and lifecycle of software using

proposed template generator. Its task is to analyze the original

hand-written or generated code, to discover crosscutting

concerns, suggest proper code structure and turn it into a

template that could automatically generate source code and

consequently speed up the process of developing and

maintaining software. It would also eliminate a requirement for

developers’ wide knowledge of template metalanguages.

Following sections describe template generator role in

software lifecycle and its design. Process of source code

mining and converting it to template written in metalanguage

is also described. Example of transformation C# source code

to C++ code, using templates, is given.

Improvement of Software Development Process

with use of Template Generator

Ivan Grbavac

Sveučilište u Dubrovniku

ivan.grbavac@unidu.hr

T

II. SOFTWARE DEVELOPMENT PROCESS

Traditional software development process consists of

analysis, design, implementation, and testing [5], [6]. In a case

when developers didn’t use code generators or their use was

minimal, produced application source code can be categorized

into three classes (Fig. 1.) [7], [8]:

• common class, common to the most of developed

applications in a software enterprise, where

applications consist only of common libraries,

• resemble class, similar to common, but made without

use of code generators, which should be handmade

for every application and different by writing style

depending on developer,

• different, application-specific, class that depends

completely on application, also handwritten and

cannot be automatically generated.

Without use of any code generator tools, only common

libraries are reused by developers on their own risks to reduce

the coding cost. Only the code in the resemble class might be

completely automatically generated by code generators and its

proper structure can increase the software reuse and can

reduce the coding cost. Of course, some parts of different class

might be also generated, but those parts require programmers’

involvement. It becomes obvious that the biggest improvement

of software lifecycle can be achieved by optimizing or

automating the development of the middle class. That

improvement might save even more time and money on

maintenance or further development of existing projects, as

described in following examples.

Fig. 1. Application Code Classification

During long development process applications may

encounter problems, for example, application development can

be put aside and subsequently continued but without the

developers who started development. In this case, it is

necessary first to examine the source code previous employees

made, which was not, in many cases, properly structured and

which varies depending on the programming style. Of course,

it is a time consuming process. A similar problem may occur

after the end of the software development and deployment.

Then, the software manufacturer has to work on maintenance,

further development and improvement of the system, usually in

way as indicated in Fig. 2. In such continuation of the

lifecycle it is expected not only that one developer will be

replaced by other, but because of the length of software’s life

it is expected that several employees will work on maintenance

of a particular part of code during its lifecycle.

Fig. 2. Software lifecycle

A. Template Generator Role in Software Development

Process

As previously indicated, the software lifecycle and

maintenance, if software was not developed with the help of

code generators, can be expensive and time-consuming.

Development of new application requires analysis, design,

coding and testing while after-birth system engineering

processes require time-consuming and in-depth understanding

of each system component in order to refactor it, to make it

evolve, to migrate it to a new platform or to integrate it into a

larger system [9]. As shown in Fig. 1, a specific part of the

code is common or resemble to all applications and modules

while a small piece of code varies depending on the

application role. These two basic parts of the software,

resemble and common class, due to its similarity have the

potential to, with the help of text mining processes, contain

certain patterns which can be converted into templates for

future generation of source code. In this way the module, layer

or library could be turned into a set of templates that could,

with minor modifications via a graphical interface, generate

structured production-ready source code. Those parameterized

templates could be used in the further development of the

software.

Of course, one part of the code can never be turned into

template and parameterized as this code performs a specific

function in a particular application. Template generator should

indicate the existence of such code and protect it from

potential modification [10]. By doing all mentioned, following

effects might be achieved:

• Reduced development time of new functionality or

modules: if patterns, by which old parts of the

application were developed, exist there is a likelihood

that at least some parts of the code could be turned

into templates and that new source code could be

produced automatically.

• Reduced number of errors: templates, generated from

existing code, are used during new development and

the possibility of errors is minimized. If template

contains an error, it can be easily fixed.

• Easier maintenance and better performance: in case

when existing modules need to be amended, it is

enough to change the template or parameters and

again generate modules, same as in conventional

template code generation.

• Code reuse: if software enterprise works on similar

projects, templates used in one project might be used

in others. So the whole cycle of analysis, design,

implementation and testing is being shortened once

again.

Fig. 3. Code maintenance with template generator

Another benefit of using template generator and code

generator is production of well-structured source code as

shown in Fig. 3. Such code is easy to maintain even manually.

III. TEMPLATES GENERATOR MODEL

A. The Initial Model

Development of suggested model started with simple

problem: creation of model for converting one source code file

into template [11]. During the research of similar works [12],

[13], [14], simple model was adopted as shown in Fig. 4.

In presented model, source code file is parameterized, and

parameters from it are extracted. Initial parameter values are

put in XML format and saved in the database while

parameterized source code goes for further processing.

Parameterization is done by identifying names and types of

variables, names of objects and methods, and replacing them

with keywords with references to default values. Problems that

should be resolved in this step are related to the language

dependent syntax. Template generator must be able to generate

templates which are not dependent on any language that

consequently enables generation of production-ready source

code in multiple programming languages using only one

template.

Fig. 4. Generation process - one source file

During that process, parameterized code would be turned

into XSL template which could be saved in the database and

would later (with suggested default values) be used as input to

the source code generator. For code generation process, it is

the best to use existing generator with ability to be adopted to

own needs. In this case, open source generators, such as

MyGeneration [15], are recommended choice.

B. The Advanced Model

 The previous section describes the concept of a simple

template generator that requires of developer to take a part of

code, or one particular file that will serve as input to our

program, and to put it in generator to be turned into template.

This process speeds up the development of software and does

not require any specific knowledge about template coding,

parameterization and metalanguages. However, developers

work could be reduced even more as shown in Fig. 5.

The next step in the development of the concept of template

generator is development of a model that would accept and

analyze multiple files. Developer would, in that case, give as

template generator input a number of files from the project.

Those files should have a similar program code. The program

would then, as in the initial concept, perform parameterization

of source code. Parameterization would be followed by text

mining process, which would also include algorithms for

preservation of original source code of different class and

definitions of particular programing languages.

Fig. 5. Template generator model

 The text mining process would take only parts of the code

which can be converted into one or more templates, while

other parts of code would be unchanged and their existence

indicated to developer. Selected parts of code should then be

turned into a template and saved in the database for further

use. This model does not describe data migration - extraction

of data from the existing system in order to re-format and re-

structure it and to upload it into the new system, because

mentioned processes are already well described in [16], [17],

[18].

IV. COMPONENT PARAMETERIZATION AND TEMPLATES

The generator proposed in this paper combines multiple

source code files into one or more templates. Multiple

template files should be made when, for example, web

application is subject of template generation [19], [20]. In that

case separation of design and code, which should be supported

by generators to produce structured and more manageable

code, is welcomed. Proposed template language in this

generator is XML and XSL. Parameterization and

transformation of small code fragments should be supported as

well as of whole application layers. Produced templates should

be efficiently organized with browsing and searching options

built into the user interface.

 Each produced template can have zero or more parameters.

To enable that the same template can be reused in several

different applications or contexts, it must have zero parameters

or it must have capability to generate source code based on

user-defined parameters. If a template does not have

parameters, its code is stored for later retrieval and in that case

the generator acts as a code library producer and produces

common source code class. If a template contains parameters

than, during code generation, template parameters have to be

populated with values provided by the user and inserted at

specific places into the generated code.

A. Simple Parameterization of the Source Code

First process of template generator is to analyze source

code, find variable/class names and types and store them into

XML file as default values which will base values for new

code generation. In new generation process those values will

be provided to user as default, but user will be able to select

other values depending on context of developing application.

In order to use the existing code within a new context, it is

necessary to define all above mentioned code fragments that

could be changed in that context [11] as in C# example:

public class MyClass

{

 private int _age;

 public int Age

 {

 get{ return _age; }

 set{ _age = value; }

 }

}

If we name, with unique labels, the code fragments that

might be important to context, we get the following code:

public class [ClassName]

{

 private [VarType] _[VarName];

 public [VarType] [VarName1]

 {

 get{ return _[VarName]; }

 set{ _[VarName] = value; }

 }

}

The code used in example above represents a simple

template with four independent parameters: ClassName

VarName, VarName1 and VarType. As we intended,

generated code could vary depending on the values entered for

these four parameters. This simple template can be easily

created and implemented, but its syntax has at least two issues

which prevent it from being used within a code generator:

• the syntax is language dependent (e.g.. if developer

want to produce code in C++, this template will not

be useful to him),

• there is no support for loops, conditions, comparisons

and other statements.

To overcome the aforementioned limitations, it is proposed

that the template generator uses XML and XSL as languages to

describe templates as in [21]. XML is a language suitable for

data description, while XSL is a powerful transformation

language suitable to template description. Another advantage

of using XML/XSL is that templates are stored in the way that

they do not contain special syntax of some programming

language, they are syntax free. During generation process,

definitions of target language need to be loaded and

production ready source code will be automatically generated

in targeted language. Complex templates can be defined, and

source code generated, using a combination of these two

languages XML/XSL [22] as shown in Fig 6..

Fig. 6. Generation of application in target language

B. Template Parameters

Let us assume that proposed generator has to convert the

following code into simple template. As previously mentioned,

template will be first parameterized and then converted into

XLS template, while data will be stored into XML format

which will be shown in this section.

public class Person

{

public int IDNumber {get; set;}

public string FirstName {get; set;}

 public string LastName {get; set;}

 public DateTime DateOfBirth {get; set;}

}

If a template generator finds similar code describing same

concern, in solution or files/classes given to analysis, it will try

to make one template for code generation, but it will have to

make multiple XML files for every occurrence of similar code.

Those multiple XML files will be shown to the developer

during source code generation, as list of default values.

Definitions of template parameters have to support

dependency of one parameter on another. If template

parameter file stores data about simple class without methods,

it is obvious that for such class, during code generation,

database table must be defined. In that case our data also

depends on that database, table and table fields. During code

generation, besides class code in a target language, developer

must be able to generate and modify table in a database and

the associated basic procedures:

• insert - inserts row in table,

• update - updates table row,

• delete (id) - deletes table row,

• select_one_row (id) – selects only one row

depending on given primary key,

• select_all (order_by) – selects all table rows and

orders them by given attribute name.

To enable mentioned requirements XML data template has

to be improved by data related to database. Those parameters

will be called DatabaseTable and TableFields. Last parameter,

which indicates dependence on database, will not only contain

database name but it’ll contain also parameters to enable

templates’ connection to database. Last parameter will be

called ConnectionString. Mentioned parameters are all

mutually dependent and within XML dependencies must be

defined that TableFields depends on DatabaseTable and it

depends on ConnectionString [11]. Those parameter

dependencies can be defined with hierarchically organization.

Parameter values, organized on such way, allow easy

refactoring of the XSL template. Furthermore, some fields

must be allowed to have additional attributes like auto

increment, data type, is NULL… Such attributes are needed

because they enable generation of variable declaration and

validation of generated code. The resulting format of XML in

given example is:

<Param name="ConnectionString">

 <ParamValue value=”connection_string_value”>

 <Param name="DatabaseTable">

 <ParamValue value="Person">

 <Param name="TableField">

 <ParamValue value="CountryID"

autoincrement="1"

is_null="0"

datatype="System.Int32" />
 <ParamValue value="FirstName"

datatype="System.String" />
 <ParamValue value="LastName"

datatype="System.String" />

 <ParamValue value="DateOfBirth"

datatype="System.DateTime" />
 </Param>

 </ParamValue>

 </Param>

 </ParamValue>

</Param>

Usage of XML format is widely distributed among code

generators as in [23].

C. Creating XSL Templates and Intermediate Code in

Target Language

As stated previously, XML is used to describe data, but it is

not powerful enough to be used to create templates. Instead of

it, more powerful language is used XSL [24]. Let’s take

another simple example of interface containing methods for

handling employees.

public interface IEmployee

{

 void OrderListByLastName();

 void OrderListDateOfBirth();

}

If this code is to be parameterized, first it is necessary to

make XML data structure. Then, based on the source code and

using XSL transformations, we get the XSL code [25].

Resulted XML data description, whose creation was described

in the previous section, is:

<param name="Employee">

 <method name="OrderListByLastName"/>

 <method name="OrderListDateOfBirth"/>

</param >

After the XML code is created, the same source code is

used to create XSL code. Tags in both codes, XML/XSL,

should be equally for equal names and values. In XSL code,

presented below, are two important characteristics:

• values, names of variables and method names are

replaced with the @name which, later during

production-ready code generation, must be replaced

with specific default value from XML data. Through

the graphical interface user would be able to change

the default value in an arbitrary, if this value meets

the rules of the target language,

• XSL has the ability to create loops (<xsl:for-each>). In

that case there is no needed to define both methods

from example through separate part of XSL code. It is

possible to create loop and through it generate any

number of methods, as shown in following code.

<xsl:template match="param">

public interface I<xsl:value-of select="@name"/>

{

<xsl:for-each select="method">

 void <xsl:value-of select="@name"/>();

</xsl:for-each>

}

</xsl:template>

As shown in previous example, generated XSL template

does not contain the features of a particular language. It has

only the features of object-oriented languages such as Java, C

++ and C#. This template can be used to generate production-

ready interface code in any of mentioned languages. To

demonstrate that ability, in example that follows, intermediate

template code in C# and in C++ programming language is

produced using XSL Code Generator with target language

definitions [26]. Resulted template can afterwards easily be

turned into source code in targeted language. Process scheme

is shown at Fig. 6.

<!-- MAIN -->

<xsl:template match="/">

<xsl:apply-templates select="param"

mode="csharp"/>

 <xsl:apply-templates select="param" mode="cpp"/>

</xsl:template>

<!-- C# -->

<xsl:template match="param" mode="csharp">

public interface I<xsl:value-of select="@name"/>

{

<xsl:for-each select="method">

 void <xsl:value-of select="@name"/>();

</xsl:for-each>

}

</xsl:template>

<!-- C++ -->

<xsl:template match="param" mode="cpp">

class I<xsl:value-of select="@name"/>

{

public:

<xsl:for-each select="method">

virtual void <xsl:value-of

select="@name"/>() = 0;

</xsl:for-each>

};

</xsl:template>

At the end of the process, C++ code can be produced with

normal code generators as [15], [23]. With this transformation

we showed the way to translate normal source code into

template and produce new source code as shown in Fig. 4. In

order to make this demonstration more effective source code

was written in C# language and target language for code

generation was C++.

class IEmployee

{

public:

 virtual void OrderListByLastName () = 0;

 virtual void OrderListDateOfBirth () = 0;

};

As shown in this and previous section, it is not easy to

create XML/XSL templates manually. It would be easier to

choose other template language, since mentioned have a rather

complex syntax. But XSL templates are much more powerful

then alternatives, so further effort in the continuation of this

research will be partly spent on creation of a tool with a user-

friendly interface, which enables easy creation of templates.

By using the tool, user will no longer need to learn the

XML/XSL syntax.

D. Organization of Templates

Tool, mentioned in previous section, besides having user-

friendly interface and enabling users to use it without

knowledge of the XML/XSL syntax, must provide storage and

organization of templates into categories in order to be easily

managed. Also, it must provide search through large number

of templates, it have to support keywords and enable users to

associate their own keywords with each template. It is even

possible to make automated but supervised classification

technique for XML documents, which is based on structure

only, and which would suggest pattern description as in [27].

V. SOURCE CODE MINING

After template metalanguage was described, this section will

describe processes and algorithms of code mining. The

objective of this code mining process is to determine

similarities in code and suggest one resulting template which

will be used to generate multiple files and classes. We will

start with the assumption that certain similar problems during

software development reoccurs. Those problems are solved by

patterns. A pattern for software architecture describes a

particular recurring design problem that arises in specific

design contexts, and presents well-proven generic scheme for

its solution [28], [29]. But, despite efficiency of proposed

mining algorithms, some problems may occur [30]:

• old source code might be extremely complex or very

poor quality,

• the amount of old source code can be rather large,

• the target model might still be subject to change.

Stated problems can, unfortunately, only be solved with

developers’ intensive labor and reverse engineering, process of

analyzing a subject system to identify the system’s components

and their interrelationships and create representations of the

system in another form or at a higher level of abstraction [31].

A. Crosscutting Concerns

In this paper we described potential advantages of template

generators’ use in practice. As said, it can be used in:

• continuation of incomplete existing software,

• software maintenance,

• development of new software versions,

• development of new modules of existing software,

• migration to new, developing platform,

• extraction and storage of templates with well-proven

solution scheme for known problems to be used in

other ongoing or upcoming projects.

Template generators could prove very helpful, but it will

never be able to completely replace human labor and they will

perform only one part of the job. Field on which the generators

can prove their worth, and which also includes all of the above

mentioned ways of generators’ usage, are concerns - a parts of

a software system that is relevant to a specific concept or

purpose [32]. A key problem with software is that it is

becoming larger and very complex, and much of this

complexity can derive from the interaction of concerns [33].

An inadequate solution for crosscutting concerns

implementation has a negative impact on the final system with

consequences like duplicated code, scattering of concerns

throughout the entire system and entangling of concern-

specific code with code of other concerns. These consequences

lead to software systems that are hard to maintain and to

evolve [34]. Scattering of one concern through the entire

system may be very harmful, as user logging. For example if it

contains some kind of security vulnerability, and code is

duplicated and scattered around, programmer who didn’t

participated in development of that particular code will hardly

locate every piece of poor programming code.

Techniques for separation end encapsulation of concerns

seek to cleanly disconnect concerns from source code in order

to reduce complexity and increase comprehensibility [35], but

a programmer faced with the task of identifying concerns in

source code mainly has only intuition and experience to guide

him or her. Also, challenge posed to programmers is to

identify the full manifestation of specific concern in the entire

source code.

B. Aspect Mining

Proposed template generator would aim to automatically

discover above mentioned concerns and convert them into

structured templates. It would be ideal for supporting aspect-

oriented software paradigm because it focuses on the same

problems as mentioned methodology: identification,

specification and representation of cross-cutting concerns and

their modularization into separate functional units as well as

their automated composition into a working system [36], [37].

Template generator would undoubtedly enhance aspect-

oriented software development and give it new boost by

introducing it to existing lifecycle of software which was not

developed by aspect oriented paradigm. Resulted templates

could be used in new projects transferring encapsulation and

separation of concerns from an old project to new one.

Core of template generator would be source code mining

techniques. Those techniques must be able to identify scattered

crosscutting concerns and turn each concern into well-

structured encapsulated template so that produced code to can

be easily understood, maintained and modified. Mentioned

techniques are found in aspect mining, a relatively new

research domain, but already with many aspects mining

techniques have proposed as [38], [39], [40]. To be used in

code generator, mentioned techniques should be refined and

adopted to the generator. They must have ability to merge

scattered concerns into one template, but also to remember

default values of every instance of concern and provide them

to the user via graphical interface so that average user does not

need to know languages used to create template – XML and

XLS.

VI. CONCLUSION

Maintaining the existing program code, or continuation of

uncompleted software projects, can be very difficult and

demanding job often done rather manually than with code

generators because implementations of template engines are

most times based on practical experience rather than on a

theoretical background [41]. Also many concerns in software

may persist during its lifecycle even if application was

developed with code generators. To facilitate the work of

developers and help them to be able to focus on more

important things such as development of new functionality and

a new code, rather than time-consuming studying someone

else's code, it’s structuring and refinement, this paper proposes

a model of template generator. Its purpose is, through aspect

mining process, to find similar parts of code describing

crosscutting concerns and turn them into one or more

templates which will be stored for later development or code

maintenance. Resulting templates could be used in other

similar projects and would lean to aspect oriented paradigm.

Continuation of research activities on suggested model

would include the development of prototype which, for the

specific language and pattern database, could provide

described results.

REFERENCES

[1] S. McConnell, Rapid Development, Microsoft Press, 1996.

[2] F. Alazemi, M. Alawairdhi, “Feature-based Approach to Bridge the

Information Technology and Business Gap”, Recent Researches in

Telecommunications, Informatics, Electronics and Signal Processing,

WSEAS Press, 2013, pp. 87-92.

[3] D. McDavid, “Systems engineering for the living enterprise”, 18th

International Conference on Systems Engineering, 2005, pp. 244 - 249.

[4] J. Herrington, Code Generation in Action, Manning Publications, 2003.

[5] R.B. Grady, Successful software process improvement, Prentice-

Hall,1997.

[6] B.W. Boehm, Software Cost Estimation with COCOMOll, Prentice Hall,

2000.

[7] M. Yoshida, N. Iwane, “An Approach to the Software Product Line

System for Web Applications”, IEEE International Conference on

Computing & Informatics, 2006, pp. 1-6.

[8] B.W. Boehm, Software Cost Estimation with COCOMOll, Prentice Hall,

2000.

[9] A. Cleve, N. Noughi, and J.-L. HainautI,” Dynamic Program Analysis

for Database Reverse Engineering”, Generative and Transformational

Techniques in Software Engineering IV: International Summer School,

GTTSE 2011, Braga, Portugal, July 3-9, 2011, Springer, 2013, pp. 297-

322.

[10] K. Fertalj, D. Kalpic, “Preservation of Manually Written Source Code in

Case of Repeated Code Generation”, Proceedings of the IASTED

International Conference on Computer Science and Technology, 2003,

pp. 38-43.

[11] T.Helman, K.Fertalj, “Application Generator Based on Parameterized

Templates”, Proceedings of the International Conference on

Information Technology Interfaces - ITI 2004, pp. 151-157.

[12] M.C. Franky, J.A. Pavlich-Mariscal, “Improving Implementation of

Code Generators: A Regular-Expression Approach”, Proceedings of the

XXXVIII Latin America Conference on Informatics (CLEI 2012), 2012,

pp. 1-20.

[13] I. Liem, Y. Nugroho, “An Application Generator Framelet”, Proceedings

of the Ninth ACIS International Conference on Software Engineering,

Artificial Intelligence, Networking, and Parallel/Distributed Computing,

2008, pp. 794-799.

[14] K. Fertalj, D. Kalpić, V. Mornar, “Source Code Generator Based on a

Proprietary Specification Language”, Proceedings of the 35th Hawaii

International Conference on System Sciences, 2002, pp. 283-291.

[15] M. Griffin, J.Greenwood, MyGeneration Code Generator, [Online].

Available: www.mygenerationsoftware.com

[16] K. Haller, Data Migration Project Management and Standard Software:

Experiences in Avaloq Implementation Projects, Synergien Durch

Integration Und Informationslogistik, DW 2008, St. Gallen,

Switzerland. LNI, vol. 138. Gesellschaft für Informatik, 2008.

[17] K. Haller, “Towards the Industrialization of Data Migration: Concepts

and Patterns for Standard Software Implementation Projects”, CAiSE

2009. LNCS, vol. 5565, Springer, Heidelberg, 2009, pp. 63–78.

[18] J. Morris, Practical Data Migration. British Computer Society, 2006.

[19] J. D. Reilly, Designing Microsoft ASP.NET Applications. Microsoft

Press; 2002.

[20] T. Helman, K. Fertalj, “A critique of web application generators”,

Proceedings of the 25th International Conference on Information

Technology Interfaces - ITI 2003, pp. 639-644.

[21] M. Gangur, “The Use of XSLT for Table Data Tasks Generation”,

Proceedings of the 15th WSEAS international conference on

Computers, 2011, pp. 503-508.

[22] T. Helman, K. Fertalj, “System for Automated Maintenance of Web

Sites” Case studies of the Sixth European Conference on Software

Maintenance and Reengineering, 2002, pp. 19-24.

[23] J. E. Smith, CodeSmith Template-based Code Generator [Online].

Available: http://www.ericjsmith.net/codesmith/

[24] J. Clark, The Extensible Stylesheet Language Family (XSL); W3

Consortium, [Online]. Available: http://www.w3.org/Style/XSL/

[25] J. Clark, The Extensible Stylesheet Language Family (XSL); W3

Consortium, [Online]. Available: http://www.w3.org/TR/xslt

[26] XSL Code Generator, [Online]. Available:

http://www.codeproject.com/Articles/263100/XSL-Code-Generator

[27] P. Kumar, P. R. Krishna, S. B. Raju, Pattern Discovery Using Sequence

Data Mining:Applications and Studies, Information Science Reference

(an imprint of IGI Global), 2011.

[28] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal:

Pattern-Oriented Software Architecture, Volume 1: A System of

Patterns, John Wiley &Sons, 1996.

[29] F. Buschmann, K. Henney, D. C. Schmidt, Pattern-Oriented Software

Architecture, Volume 5: On Patterns and Pattern Languages, John

Wiley &Sons, 1999.

[30] A. Rüping, “Transform! Patterns for Data Migration”, Transactions on

Pattern Languages of Programming III, Springer, 2013, pp. 1-16.

[31] E.J. Chikofsky, J.H. Cross, “Reverse engineering and design recovery:

A taxonomy”. IEEE Software 7, 1990, pp. 13–17.

[32] H. Ossher, P. Tarr, “Multi-dimensional separation of concerns and the

hyperspace approach”, Proceedings of the Symposium on Software

Architectures and Component Technology: The State of the Art in

Software Development, 2000, pp. 293-301.

[33] M. Revelle, T. Broadbent, D. Coppit, “Understanding Concerns in

Software: Insights Gained from Two Case Studies”, Proceedings of the

13th International Workshop on Program Comprehension, 2005, pp. 23-

32.

[34] G. Czibula, G. S. Cojocar, I. G. Czibula, “A Partitional Clustering

Algorithm for Crosscutting Concerns Identification”, Proceedings of the

8th WSEAS Int. Conference on Software Engineering, Parallel and

Distributed Systems, 2009, pp. 111-116.

[35] G. Kiczales, J. Lamping, A. Mendhekar, C.Maeda, C. V. Lopes, J.-M.

Loingtier, John Irwin, “Aspect-oriented programming”, Proceedings of

the European Conference on Object-Oriented Programming (ECOOP),

1997, pp. 220-245.

[36] A. Yakout, A. Mohamed, A. El Fatah, A. Hegazy, A. R. Dawood,

“Aspect Oriented Software Development vs. other Techniques

(Structured Approach and Object Oriented Approach)”, Computer and

Information Science Vol. 3, Canadian Center of Science and Education,

2010, pp. 256-276.

[37] A. Rüping, “Transform! Patterns for Data Migration”, Transactions on

Pattern Languages of Programming III, Springer, 2013, pp. 1-16.

[38] J.R. Avila, A.F. Ramirez, C.A. Cruz, I. Vasquez-Alvarez, “The

Clustering Algorithm for Nonlinear System Identification”, WSEAS

Transactions on Computers, Issue 7, vol. 7, 2008, pp.1179–1188.

[39] G. Serban, G. S. Moldovan. “Aspect Mining using an Evolutionary

Approach”, WSEAS Transactions on Computers, 6(2), 2007, pp. 298–

305.

[40] G. Moldovan and G. Serban, “Clustering based aspect mining

formalized”. WSEAS Transactions on Computers, 6(2), 2007, pp. 199–

206.

[41] B.J. Arnoldus, M.G.J. van den Brand, A. Serebrenik, J.J. Brunekreef,

Code Generation with Templates, Atlantis Press, 2012.

