Traffic modeling of player action categories in a MMORPG

Mirko Suznjevic
mirko.suznjevic@fer.hr

lvana Stupar
ivana.stupar@fer.hr

Maja Matijasevic
maja.matijasevic@fer.hr

University of Zagreb Faculty of Electrical Engineering and Computing
Unska 3, 10000 Zagreb, Croatia

ABSTRACT

In this paper we present a user action specific modeling
of network traffic in a Massively Multiplayer Online Role-
Playing Game (MMORPG). We have performed measure-
ments for each of the previously defined action categories
for MMORPGs (Trading, Questing, Dungeons, Raiding, and
Player versus Player Combat) and formed models based on
the obtained traces. Models are implemented through mod-
ification of Distributed Internet Traffic Generator, and ver-
ified through comparison with real traffic. As a case study
we use World of Warcraft.

Categories and Subject Descriptors

K.8.0 [Personal Computing]: General — Games; H.4.4.3
[Information Systems Applications]: Communications;
1.6.5 [Simulation and Modeling]: Model development—
traffic measurements, statistical analyses, model implemen-
tation

General Terms

Measurement, Performance, Experimentation, Verification

Keywords
MMORPG, World of Warcraft, Traffic, Modeling

1. INTRODUCTION

Massively Multiplayer Online Role-Playing Games
(MMORPGS) are becoming increasingly popular in the re-
cent years. The amount of network traffic created by these
virtual worlds is becoming more and more significant in
the overall gaming traffic which is estimated to increase by
the rate of 37% in the period from 2009-2014 [1], a sec-
ond largest growth after video related traffic categories. For
game publishers, MMORPGs present a very interesting field
of computer entertainment industry as they provide very
good revenues. The number of MMORPG titles in the mar-
ket is growing constantly and game providers are trying to
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keep the existing player base, and also to attract new play-
ers. In order to achieve this, a satisfying level of Quality
of Service (QoS) must be provided. Networking is one of
the important aspects in the overall performance of the vir-
tual world. In order to be realistic and immersive, a virtual
world needs to be responsive, which, on the network level,
means that the latency values need to be low, and crucial
data must be delivered in timely manner. In order to pro-
vide the best possible networking service, traffic must be
studied, analyzed, and modeled. For example, recently a
network provider, due to the change introduced by the new
version of a game, had issues with correctly labeling that
traffic as gaming class, which resulted in a much lower QoS
level followed by a revolt of the customers [25].

In this paper we model the traffic of the currently most
popular subscription based MMORPG — World of Warcraft
(WoW) [15]. In the previous works [26, 34], which modeled
the traffic of WoW, authors agree that it is hard to achieve
a good fit of the model. Also, the traffic of MMORPGs can
be very variable and can change based on the parameters of
the situation in the virtual world [7, 18, 23]. Our approach
is to model the traffic across a set of action categories which
represent the situation in the virtual world. Through this
methodology we aim to model the traffic more precisely and
to describe the relationship between the application state
and the network characteristics. In our previous works we
have defined action categories and performed analysis of the
traffic characteristics of each category [31, 33]. Data, on
which the model has been based, has been gathered during
2008 in the 2.x version of WoW (i.e., expansion The Burning
Crusade). The process of modeling was done based on the
algorithm presented in [4]. We have implemented the models
in Distributed Internet Traffic Generator (D-ITG)[2], and
performed validation of the generated traffic.

We have also performed measurements of player behav-
ior in terms of defined categories [30], and investigated re-
lationship of player motivations and their in-game behavior
[32]. Based on the measurements of player behavior in future
work we aim to develop a model of player behavior based
on action categories which combined with traffic models will
allow us to simulate the overall game traffic better.

The remainder of this paper is structured as follows: in
section 2 we present the related work, in section 3 we briefly
describe WoW and our action categories, in section 4 we
describe the process of measuring and preparing the data,
in section 5 we describe the modeling methodology, in sec-
tion 6 we present the results, in section 7 we explain the
implementation, and we conclude the paper in section 8.



2. RELATED WORK

With the increase of popularity of online games, the in-
terest of the academic community for the topics related to
network traffic generated by games increased as well. One
of the first works in the field of traffic modeling of network
games was done by Borella [4] who analyzed the traffic from
the First Person Shooter (FPS) game Quake, using method-
ology introduced in [27]. There are many more works which
model the traffic of different games from the FPS genre:
Quake 38 [23], Quake 4 [9], Halo [22], Halo 2 [36], Half-Life
[16], Counter—Strike [10, 14].

As MMORPGs became more and more significant in the
online game market, especially by the contribution of their
network traffic, researchers started to shift from FPS games
and Real-Time Strategies (RTS) such as Starcraft [11], to
studying MMORPGs. Chen, Huang, and Lei [7] have per-
formed a detailed analysis of ShenZhou Online, on a network
trace captured on the server side with the assistance of the
game operators. They have determined the following prop-
erties of the MMORPG traffic: tiny packets, periodicity, sig-
nificant signaling overhead, temporal dependence of packet
arrivals within connections and aggregate traffic. Explana-
tions of those characteristics have been offered through spe-
cific user behavior (e.g., practice of team play, user behavior
diversity, etc.). They state that the problem of modeling
user behavior and source traffic in MMORPGs is especially
challenging due to the diversity of user behaviors. Further-
more, the authors have used their trace to analyze the re-
lationship between network QoS and session times [5], to
further examine implications of player interactions on gen-
erated network traffic [8], and to investigate performance of
TCP for MMORPGs [6].

Svoboda, Karner, and Rupp [34] analyzed the traffic trace
of WoW captured within the mobile core network. They
found that WoW is amongst the top 10 TCP based ser-
vices in the monitored network and consumed 1% of all
TCP based traffic. Authors performed active measurements
and captured a trace of two groups consisting of five WoW
clients connected to ADSL lines. Their analysis at packet
level shows that the packet size in the downlink direction
is quite smooth and can be modeled with a Weibull dis-
tribution while the uplink packet sizes have large discrete
steps. They note that the high number of transmitted pack-
ets are ACK packets carrying no payload. Packet Inter-
Arrival Time (IAT) was modeled by a joint distribution of
three variables.

Kim et al. [18], [19] analyzed a traffic trace gathered at
the server side link of the MMORPG Lineage II. They cap-
tured and analyzed over 7.6 billion packets and analyzed the
aggregate traffic and per session traffic. Authors note a sig-
nificant asymmetry of the upstream and downstream traffic,
high percentage of the packets in the upstream consisting of
only signaling information (77.1%) while the server pack-
ets having only 2.4% of pure signaling packets. Size of the
packet payload in the upstream direction shows that pack-
ets are relatively small, half of the packets have less than
20 bytes of payload and 99% less than 50 bytes. Daily and
weekly patterns both in the number of users, as well in the
bandwidth load on the server exist with a linear correlation
between the number of users and bandwidth.

Griwodz and Halorsen [17] analyze an 1 hour long, server—
side, network trace of an MMORPG Anarchy Online pro-
vided to them by the game provider Funcom. Their results

show that while single TCP streams are thin, the server link
can be carrying hundreds or thousands of concurrent streams
which together may cause congestion without reducing the
sending rate. Also, using TCP does not have to be slower
than using UDP as the send buffer is usually empty and an
event may be sent immediately.

Wi, Huang, and Zhang model the traffic of a MMORPG
World of Legend based on trace obtained while accessing
the game through mobile GPRS access network. For packet
TIATSs they have used an Extreme Value distribution for the
client side traffic and a sum of two Extreme Value distri-
butions for the server side traffic. Packet size was modeled
as sum of discrete steps (on 66 bytes and 72 bytes) and an
Extreme Value distribution for the server side and as a de-
terministic distribution for the client side (77 bytes).

While many works in the area of traffic analysis and mod-
eling acknowledge the influence of different situations in the
virtual world on the traffic patterns [23, 18, 7], the following
works explore this relationship further. Park, Kim and Kim
[26] collect and analyze network traffic traces of FPS Quake
3 (Q3) and a MMORPG WoW. They define user actions
based on the number of players and player behavior. For
Q3 actions are defined as: Shooting, Moving, Normal, No
Play. For WoW actions are defined as: Hunting the NPCs
(Non-Player Characters), Battle with players, Moving, and
No play. Authors perform modeling of every type of behav-
ior; for WoW size of the packets is modeled by the Expo-
nential distribution on the server side and Normal on the
client side, while packet IATs are modeled with the normal
distribution.

Further going into the micro scale, and analyzing contents
on the packet level is done by Szabd, Veres, and Molnér [35].
Authors claim that the nature of human behavior has a high
impact on traffic characteristics and that it influences the
traffic both at macroscopic level (e.g., traffic rate) and at
microscopic (payload content) level. They measure and an-
alyze the traffic of WoW and Silk Road Online. They define
the states of the virtual world by using two axes, the move-
ment of the player (moving, stalling), and the number of
surrounding players as a mean to determine the location (in
or outside of the a densely populated area — “the city”). This
results in four possible states: Moving in the city, Moving
outside the city, Stalling in the city, and Stalling outside the
city. Identification of the separate states was done through
active measurements and wavelet analysis. Validation of the
model was done through controlled measurements and com-
parison with the defined states.

Traffic analyses of the Linden Labs 3D virtual world Sec-
ond Life also confirmed the influence of avatar movement
rate and popularity of specific parts of the virtual world on
the network traffic [24, 20].

Our approach is to model the traffic based on user actions
through categories which are sufficiently general, distinct,
and measurable in terms of player behavior in MMORPGs.
While these models are created for WoW, we think that
it is very likely that they capture general trends of the
MMORPG traffic.Further study would be needed to prove
it in a scientific way. Namely, most MMORPGs have com-
mon characteristics which shape their network traffic: a
client—server architecture, some area of interest technique,
and transporting only updates about dynamic entities’ po-
sitions and actions over the network.



3. WOW AND ACTION CATEGORIES

WoW uses a client—server architecture, in which the vir-
tual world is replicated on multiple “shards”. A shard is
a copy of a part or the whole virtual world, which resides
on a specific server. Players assigned to one shard can in-
teract with the world and other players in that shard, but
they are not able to interact with players or objects in other
shards. According to data from [15], WoW is currently the
most popular subscription based MMORPG with 12 million
active players worldwide [13]. In a MMORPG, the player
typically controls a virtual character (avatar) which repre-
sents him/her in the virtual world. Players may perform a
variety of actions, which typically differ depending on the
game content. Nevertheless, several key fundamental ele-
ments, which are common for the most MMORPGs, may
be identified: progression or advancement in player’s level,
social interaction, in-game culture, and character customiza-
tion. Focusing on player progression and based on several
key characteristics (e.g., number of actively participating
players, dynamics of player input, number of active Non-
Player Characters (NPCs) etc.), we defined specific action
categories for MMORPGs [31, 33]. These action categories
have been defined on a case study of WoW, but are consid-
ered to be applicable to MMORGPS in general:

Trading: Exchange and creation of virtual goods, between
two players directly or through auction system.

Questing: Performing different tasks given by NPCs for spe-
cific rewards (e.g., experience and virtual goods). Mostly
single player activity, but there are also quests which re-
quire a group effort.

Dungeons: Combat between a small player group and hos-
tile NPCs, in specific instances (i.e., isolated portions of the
virtual world which are replicated for each group of players).
Instances do not allow interruption or help from players out-
side the specific group. This is a primary activity for small
groups.

Raiding: Fighting among large group of players and more
difficult and complex NPCs. This category is similar to Dun-
geons, but it is larger on all scales. As the complexity of the
task increases, so does the value of the prizes, therefore Raid-
ing yields the best rewards.

PvP combat: Combat between players with very low num-
ber or in complete absence of NPCs. Player count may vary
significantly.

For more details on action categories specification and prop-
erties an interested reader is referred to [31, 33].

4. MEASUREMENTS

For the purpose of creating the traffic models for each
action category we had to obtain the action specific network
traces. Required network traces were gathered with the help
of six real WoW players (volunteers). Players included in the
measurement process gathered the data which was used for
modeling and validation.

4.1 Packet capture

We have performed packet capturing on the clients side
by using the Wireshark software network protocol analyzer
(http://www.wireshark.org/). The following measurement
procedure was used: as the player was about to do a spe-
cific action in the virtual world, he or she would start data
capture with Wireshark. As Dungeons, Raiding, and PvP
combat categories are performed in the specific areas of the

virtual world called instances, the testing player would start
the capture upon entering the instance (e.g., Gruul’s Lair is
a raiding instance, Hellfire Citadel is a dungeon, and Arathi
Basin is a PvP battleground) and stop the capture when
leaving the instance. For the Questing category, the players
started the capture upon receiving the quest and stopped it
once they finished all actions related to the quest (i.e., exit-
ing the game, or setting out to do some other action). For
Trading category, the players were instructed to capture the
session in which they tried to sell or buy something in the
auction house or from another player. Also, other trading
actions were included, such as checking in-game mail and/or
bank for retrieving items, and crafting virtual items. In the
end, the players saved the trace into a file, and annotated
it with a very detailed designation of what they did dur-
ing that particular capture. This detailed designation was
needed to solve the problem associated with the players im-
mersion in the game. Namely, the players often forgot to
stop (as well as to start) the capture at the right moment,
resulting in more than one type of player actions being rep-
resented in a given trace. Through the filtering process,
a large portion of taken measurement data was discarded
and not taken into consideration. We captured 83 context
specific network traces comprising of 1395940 packets. In-
terested parties may contact the first author to obtain this
data (anonymized), free of charge for use in research and
education, under certain agreed conditions.

4.2 Packet filtering

We note that there is a large TCP signaling overhead in
our traffic trace, as the TCP ACK packets carrying no pay-
load are quite common. We performed the filtering of the
trace in which we excluded TCP ACK packets with empty
payload, but we have noted the percentage of those for each
category. The initial packet trace consisted of a high number
of server side packets having the size corresponding to the
Maximum Transmission Unit (MTU). We assume that this
is the result of application trying to send datagrams larger
than MTUs. In order to determine the Application Protocol
Data Unit (APDU) size we have implemented an algorithm
proposed in [34]. They noted that some packets had the
TCP PSH flag set which is the case when application has
data that it needs to have sent across the network immedi-
ately. According to the assumption, if APDU is larger than
the MTU, the TCP service splits the APDU and assigns the
PSH flag to set for the last packet in the sequence. We follow
this approach by processing our dataset in order to calculate
correct APDU values and inter-arrival times between sub-
sequent APDU, and modeling those values (not the packet
size or packet IAT).

S. METHODOLOGY

Traffic modeling for games is done by defining analytic
traffic models (i.e., mathematical description). These mod-
els are easier both to convey and to analyze compared to
empirical models of traffic (e.g. tcplib [12]). In this work
we follow the approach for application traffic modeling by
Paxson [27], firstly used in the area of network games by
Borella [4]. The algorithm is also described in detail in [21],
and it is presented as follows:

1. The probability distribution of the data set is exam-
ined and an appropriate analytical distribution is cho-



Table 1: Model parameters for Trading

Data Count | Model Parameters A2 Tail ACF(1)
Client APDU | 15612 | Deterministic (8 distinct | 6 : 5.25%,10 4.21%,14 0.0911 32(0.20)/0 0.24
size values) 34.05%,15 : 5.72%, 18 : 3.19%, 35 :
32.50%, 39 : 9.14%, 51 : 5.94%
Client IAT 15602 | Weibull <500 + Weibull | (v = 0.99,a = 176.74) 0.0817 | 10(0.06%)/- 0.29
>500 + Deterministic (2 | 50.53%, (v = 0.66, « =
distinct values) 1220.33, p = 500.95) : 28.53%,0 :
17.60%, 500 : 3.34%
Server APDU | 27082 | Lognormal (=416, = 1.15) : 100%, 0.0888 | 145(0.54%)/- 0.05
size
Server IAT 27081 | Lognormal + Determin- | (1 = 5.62,a = 0.95) 0.1063 | 23(0.08%)/- 0.17
istic (2 distinct values) 82.68%, 200 : 9.62%, 218 : 7.7%

sen. This is usually done through the visual exami-
nation of the Probability Density Function (PDF) or
Cumulative Distribution Function (CDF) of the data.
An example of analytical distribution is Weibull dis-
tribution with the following PDF:

— D (BT Byt ()Y 1

flay=2E Lyt (M

where ~ is the shape parameter, « is the scale param-
eter, and p is the location parameter.

A very valuable tool in this process is a Quantile-
Quantile plot (Q-Q plot), which is a graphical method
for comparing two distributions by plotting their quan-
tiles against each other. First, the set of intervals for
the quantiles are chosen. A point (z,y) on the plot cor-
responds to one of the quantiles of the second distribu-
tion (y-coordinate) plotted against the same quantile
of the first distribution (x-coordinate). In this way, by
plotting an empirical distribution, F(z), against the
chosen distribution G(x) we can observe the goodness
of fit. If the resulting points are in a straight line, it
means that the F'(x) = G(x), but in practice there are
often deviations in the fit. Through Q-Q plot it is easy
to observe where deviations occur (e.g., lower tail, the
main body, upper tail).

In order to manage large data sets values are aggre-
gated into “bins”. The final results may become skewed
depending on the bin choice. The algorithm for choos-
ing the optimal bin size is taken from [29]:

w = 3.490n"/® (2)

where o is the estimate of the standard deviation and
n is the number of observations.

. The data set is fitted onto an analytical distribution
using method of least squares to determine the param-
eters of the distribution.

. If the fit is especially deviating from the part of the
distribution (e.g., upper tail), it is possible to model
the data with split distribution. Q-Q plot can be used
to observe the deviations.

. Calculating the \? discrepancy measure. As the stan-
dard goodness of fit tests are biased for large and messy
datasets, discrepancy measure is used [28]. In short we

will explain the discrepancy measure. If we have ob-
served n instances of a random variable Y which we
want to model using another distribution Z, N is the
number of bins in which we partition the distribution
Z. Each bin has a probability p; associated with it,
which is the proportion of the distribution Z falling
into the ¢th bin. Let Y; be the number of observations
of Y that actually fell into the ¢th bin. Chi-Square
goodness of test X? is defined as:

N

Y; — npi)*
xe-y ok 3)
i=0 ¢
K parameter is defined as:
N
Y: — np;
i=0 *

Estimator for discrepancy for the grouped data is de-
fined as:

5\2_X2—K—df

(5)
Where n is the number of observations in the data set
and df is the number of degrees of freedom of the test.
The value of df is calculated as the number of bins
N minus the number of parameters that were used to
estimate the analytical distribution. In the case of de-
terministic distributions, in which all observations are
expected to have the same value, this equation causes a
divide-by-zero ambiguity if the empirical data set con-
tains values that vary from the expected value where
the expected value is zero (i.e., np; is zero). In order
to avoid this problem the following alternative versions
of the equations are used:

n—1

X2 = Z: (npl}z Yi) (6)
K _ ZO (’eriyz Yz) (7)

5. Examination of the tail, in search for deviations using

the following expression:

a

& =logs b (8)




Where a is the number of instances predicted to lie in
a given tail, and b is the number of instances that ac-
tually lay in this tail. If the b equals zero it is replaced
by 0.5. If the values of £ are positive it suggests that
the model overestimates the tail, and negative values
indicate that the tail is underestimated.

6. Calculation of the autocorrelation function of the trace.
Usually, short-term autocorrelation, or the autocorre-
lation at lag 1 is examined.

6. RESULTS

In this section we present our fits for the APDU size, and
IAT across all action categories. Additional detail about
traffic characteristics of each category can be found in [31].
Client packet sizes are comprised of several discrete steps.
The most frequent values of payload sizes vary constantly
across different actions, but packets of size 35 B are the
most frequent which is in contrast with the [34] who mod-
eled WoW client traffic with packets of size 6 B, 19 B and
43 B. We are assuming that these packets are responsible
for carrying information about character’s movement as sug-
gested in [35]. Client side IATs can be divided in two sectors,
below 500ms and above. For both areas Weibull distribu-
tion showed as a good fit. Also, significant “spikes” exist on
values 0 and 500, which we assume to be due to dynamics
of player activity. Subsequent packets (0 ms IAT) are sent
while player is performing a highly dynamic action (e.g.,
highest percentage of Oms IATSs is in PvP combat), while
500 ms IAT is probably due to some sort of keep alive mech-
anism. Server side APDU size have a good fit in Weibull dis-
tribution with some discrete steps (usually at 37 B). Also,
we have noted that spikes occur around 7000 B, probably
related to loading instances where significant data must be
transported as these spikes occur only in action categories
which are related to instances (i.e., Dungeons, Raiding, PvP
combat). Discrete steps for server side IATs have been ob-
served at 44 ms, 200 ms, 218 ms and 328 ms. While the step
at 200 ms can be explained with the TCP delayed ACK
mechanism, the rest of the steps are probably inherent to
the WoW application protocol. Server IATs have, in gen-
eral, been the most complex to model. Parameters of the
models for action categories are given in respective Tables
1-5.

Trading shows a very high number of pure signaling pack-
ets from the client side, the smallest mean of server side
APDU sizes (164 B) and the lowest packet rate.

Questing as the most “general” category comprises various
types of actions. This category is dominant in the behavior
of the players during the process of obtaining the maximum
character level. At the later stages of the game, in the game’s
“stationary” state, questing is not so prevailing as the players
turn to more group based activities. More information about
the player behavior patterns can be found in [31, 30].

PvP combat category is the most dynamic one in terms
of user input, which results in the highest packet rate for
the client traffic (10pps). Also, this is a category with the
largest number of distinct APDU sizes in the client traffic.
The highest percentage of the packets with the value of 35 B,
the ones carrying information on player movement, is in PvP
combat, which requires constant moving from the players.

Dungeons is the “average” category, as it’s traffic charac-
teristics are in the middle between the single player activities

100
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Figure 1: Weibull distributions of the server APDU
sizes

on one side and large group activities on the other side.
Raiding creates the largest amount of information from
the server side. As we can see from the Figure 1, Raiding
traffic from the server side carries the largest payloads. This
is understandable, as this category is usually involving many
players and NPCs, so all the updates for each of the entities
have to be sent. Server side APDU size is directly connected
to the number of active entities in the area of interest of
particular avatar. As the size of the payload is high, so is
the rate of packets (9.5 pps). This causes a large number of
"pure” TCP ACK packets to be sent from the client side.

7. IMPLEMENTATION AND VALIDATION

To create the testbed for our model validation, we imple-
mented our models of application protocols through modi-
fication of Distributed Internet Traffic Generator (D-ITG)
[2]. D-ITG is an open-source traffic generator which allows
defining distributions of packet sizes and IATs of generated
traffic. It also offers a choice of several transport and appli-
cation layer protocols. Detailed architecture overview of the
Distributed Internet Traffic Generator can be found in [3].

We used source code of D-ITG version 2.7.0 Beta2, and
compiled it on Ubuntu version 10.10. Modifications were
made on the D-ITG sender component. We modeled each
of the action categories as a new application protocol. New
models of application protocols were implemented according
to several existing models for generating traffic with on-line
game characteristics. New cases of application layer proto-
cols were added in the ITGSend.cpp class of the sender com-
ponent. Also, distributions of APDUs and IATs for each of
new models were specified in the traffic.cpp class. Header
files ITG.h and traffic.h along with class ITG.cpp were mod-
ified to include new models.

In order to validate that the generated traffic has the re-
quired characteristics, we have performed comparison be-
tween the parameters of the analytical model, generated
traffic, and the traffic from the validation traces. In this way
we can see how good is the model fit vs validation traces,
and how closely generated traffic follows the parameters set
by the model. Due to the space constraints of the paper we



Table 2: Model parameters for Questing

Data Count | Model Parameters A2 Tail ACF(1)
Client APDU | 63541 | Deterministic (8 distinct | 6:4.96%, 10:7.34%, 14:20.75%, | 0.0415 | 11(0.017%)/0 | 0.0.46
size values) 18:2.82%, 21:2.36%, 35:50.18%,
39:9.20%, 51:2.39%
Client TAT 63531 | Weibull <520 + Weibull | (y = 1.19,a = 236.22) 0.1608 | 101/(0.17%)/- 0
>520 + Deterministic (2 | 55.7%, (v = 0.84,« = 1073.63, u =
distinct values) 525.95) : 12.6%,0 : 16.46%, 500 :
15.24%
Server APDU | 99163 | Lognormal (a=1.22, = 4.55) : 100% 0.2304 | 163(0.16%)/- 0.05
size
Server IAT 99177 | Normal<420 + | (p = 21287,0 = 96.59) 0.1364 | 47(0.48%)/- 0.21
Weibull>420 + De- | 71.51%, (y = 0.91,a = 451.55, ju =
terministic (3 distinct | 419.96) : 7.49%,44 : 2.15%,218 :
values) 12.27%, 328 : 6.58%
Table 3: Model parameters for PvP combat
Data Count | Model Parameters A2 Tail ACF(1)
Client APDU | 66635 | Deterministic (7 distinct | 6:7.63%, 10:5.60%, 14:13.12%, | 0.1307 0/0 0.39
size values) 19:3.11%, 35:59.50%, 51:6.66%,
58:4.38%
Client IAT 66631 | Weibull + Deterministic | (v = 0.79, & = 208.50) : 78.4%,0 : | 0.0681 | 155/(0.23%)/- 0.24
(2 distinct values) 20.18%, 500 : 1.42%,
Server APDU | 71594 | Weibull<7200 4 Largest | (v = 0.92,a = 538.59) 0.0183 | 14(0.02%)/- 0
size Extreme Value>7200 + | 93.08%, (p =  7754.99,a¢ =
Deterministic(1 distinct | 394.83) : 0.73%, 37 : 6.19%
value)
Server IAT 71594 | Weibull + Deterministic | (y = 1.71,a = 193.26) 0.1799 | 97(0.14%)/- 0.22
(3 distinct values) 83.32%, 44 : 4.13%, 200 : 4.11, 328 :
8.44%
Table 4: Model parameters for Dungeons
Data Count | Model Parameters A2 Tail ACF(1)
Client APDU | 50460 | Deterministic (7 distinct | 6:4.57%, 10:8.00%, 14:16.28%, | 0.1048 | 55(0.04%)/0 0.27
size values) 19:4.04%, 22:8.28%, 35:55.70%,
51:3.13%
Client IAT 50460 | Weibull + Deterministic | (y = 0.58,a = 268.37) 0.2038 | 221(0.44%)/- 0.33
(1 distinct value) 95.86%, 500 : 4.14%
Server APDU | 96035 | Weibull<7450 + Largest | (y = 0.89,a = 221.83) 0.0331 | 63(0.065%)/- 0.01
size Extreme Value>7450 99.15%, (0 = 7698.83,a =
198.842) : 0.85%
Server IAT | 96056 | Weibull<405 Ty = 228a = 2313 0.1443 | 32(0.03%)/- | 0.16
Weibull>405 +  De- | 78.35%,7 = 0.79,a = 344.14,u =
terministic (3 distinct | 405.96) : 2.58%,44 : 3.06%, 200 :
values) 9.55%, 328 : 6.46%
Table 5: Model parameters for Raiding
Data Count | Model Parameters A2 Tail ACF(1)
Client APDU | 19136 | Deterministic (8 distinct | 6:3.81%  10:4.35%,  14:12.15%, | 0.1022 | 19(0.1%)/0 0.27
size values) 19:20.18%, 20:3.63%, 29:6.81%,
35:45.53%, 51:3.54%
Client TAT 19135 | Weibull + Deterministic | (y = 0.76,a = 299.52) 0.0898 | 65(0.34%)/- 0.27
(1 distinct value) 85.73%,0 : 14.27%
Server APDU | 37801 | Weibull<7200 + | (y = 086, = 941.79) 0.0342 | 16(0.04%)/+ 0.16
size Weibull>7200 98.97%, (v = 0.91, « =
1183.28, u = 7298.20) : 1.03% :
Server IAT 37801 | Weibull + Deterministic | (y = 1.99,a = 188.92) 0.0660 | 6(0.02%)/- 0.03

(2 distinct values)

84.39%, 44 : 9.55%, 200 : 6.06%
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Figure 2: CDF of Dungeons client side PS

do not present figures for all parameters through all cate-
gories, but select the figures for one of the each parameters
for four different action categories as representatives. Fig-
ure 2 shows the client generated traffic of Dungeons which
is closely following the model, and rising slightly faster than
the validation data, due to the discrete steps. The fit of
the client IAT of the Trading category, shown on the Figure
3, is very reasonable, and the generated traffic follows the
parameters of the model closely.
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Figure 3: CDF of Trading client TAT

On the other hand the characteristics of the server payload
for PuP combat show several discrepancies. We can see that
the validation traces are limited on 1460 due to the MTU,
while the generated traffic does not show such properties.
By inspecting the generated traces we found out some issues
with fragmentation which we assume stem from D-ITG, but
determining the exact reason is still a work in progress.

Server IAT of the Raiding category is shown in the Figure
5. While the model underestimates the lower values, the dis-
tortion of the generated traffic is significant over the 200 ms
mark. Clearly, this issue also requires further study.

8. CONCLUSION

We proposed several action-category based models of net-
work traffic and their implementation based on D-ITG traffic
generator. The comparison of between the model and the
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Figure 5: CDF of Raiding server IAT

actual generated traffic shows a fairly good fit for the client
traffic for action categories Dungeons and Trading, while the
results for the server side traffic for the action categories PvP
combat and Raiding need improvement.
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